Composing Gloves
null
Home
Bio
Free Stuff
Contact
Databases
Free Database
Presets
Oscilloscope Database
Guitar Libraries
Sample Sorting
Courses
Glossary
Rec 140 Music Theory
Rec 103 Intro to Audio
Rec 235 Acoustics
Apps
Oscilloscope
undefined
Login/Sign Up
Formula Sheet
RMS
Sine
Wave:
d
B
R
M
S
=
x
d
B
p
2
,
where
d
B
p
=
decibels
peak
\text{Sine } \allowbreak \text{Wave: } dB_{RMS} =\frac{x\ dB_{p}}{\sqrt{2}}\text{, } \allowbreak \text{where } dB_{p} =\text{decibels } \allowbreak \text{peak}
Sine
Wave:
d
B
RMS
=
2
x
d
B
p
,
where
d
B
p
=
decibels
peak
Frequency
f
=
1
T
,
where
f
=
frequency
and
T
=
period
f=\frac{1}{T}\text{ , } \allowbreak \text{where } f=\text{frequency } \allowbreak \text{and } T=\text{period}
f
=
T
1
,
where
f
=
frequency
and
T
=
period
f
=
ν
λ
,
where
f
=
frequency,
ν
=
wave
speed,
and
λ
=
wavelength
f=\frac{\nu }{\lambda }\text{, } \allowbreak \text{where } f=\text{frequency, } \nu =\text{wave } \allowbreak \text{speed, } \allowbreak \text{and } \lambda =\text{wavelength}
f
=
λ
ν
,
where
f
=
frequency,
ν
=
wave
speed,
and
λ
=
wavelength
Wavelength
λ
=
ν
f
,
where
f
=
frequency,
ν
=
wave
speed,
and
λ
=
wavelength
\lambda =\frac{\nu }{f}\text{ , } \allowbreak \text{where } f=\text{frequency, } \nu =\text{wave } \allowbreak \text{speed, } \allowbreak \text{and } \lambda =\text{wavelength}
λ
=
f
ν
,
where
f
=
frequency,
ν
=
wave
speed,
and
λ
=
wavelength
Distance
d
=
r
t
,
where
d
=
distance,
r
=
rate,
t
=
time
d=rt\text{ , } \allowbreak \text{where } d=\text{distance, } r=\text{rate, } t=\text{time } \allowbreak \text{}
d
=
r
t
,
where
d
=
distance,
r
=
rate,
t
=
time
Time
t
=
d
r
,
where
d
=
distance,
r
=
rate,
t
=
time
(To
get
m
s
from
s
e
c
o
n
d
s
multiply
by
1000
)
t=\frac{d}{r}\text{ , } \allowbreak \text{where } d=\text{distance, } r=\text{rate, } t=\text{time } \allowbreak \text{(To } \allowbreak \text{get } ms\text{ from } seconds\text{ multiply } \allowbreak \text{by } 1000\text{)}
t
=
r
d
,
where
d
=
distance,
r
=
rate,
t
=
time
(To
get
m
s
from
seco
n
d
s
multiply
by
1000
)
Thresholds
Pascals
20
μ
P
a
or
20
×
1
0
−
6
P
a
20\micro Pa\text{ or } 20\times 10^{-6} \ Pa
20
μ
P
a
or
20
×
1
0
−
6
P
a
Dynes
.
0002
d
y
n
e
s
c
m
2
.0002\ \frac{dynes}{cm^{2}}
.0002
c
m
2
d
y
n
es
Recall
since
these
are
the
same
threshold
we
can
say
they
are
equal
thus:
\text{Recall } \allowbreak \text{since } \allowbreak \text{these } \allowbreak \text{are } \allowbreak \text{the } \allowbreak \text{same } \allowbreak \text{threshold } \allowbreak \text{we } \allowbreak \text{can } \allowbreak \text{say } \allowbreak \text{they } \allowbreak \text{are } \allowbreak \text{equal } \allowbreak \text{thus:}
Recall
since
these
are
the
same
threshold
we
can
say
they
are
equal
thus:
.
00002
P
a
.
0002
d
y
n
e
s
c
m
2
=
1
=
.
1
P
a
d
y
n
e
s
c
m
2
\frac{.00002\ Pa}{.0002\ \frac{dynes}{cm^{2}}} =1=.1\frac{Pa}{\frac{dynes}{cm^{2}}}
.0002
c
m
2
d
y
n
es
.00002
P
a
=
1
=
.1
c
m
2
d
y
n
es
P
a
Sound Power
1
0
−
12
W
m
2
\frac{10^{-12} \ W}{m^{2}}
m
2
1
0
−
12
W
deciBells
dB
SPL
(Sound Pressure Levels)
d
B
S
P
L
=
20
log
(
x
m
e
a
s
u
r
e
d
x
r
e
f
)
dB_{SPL} =20\log\left(\frac{x_{measured}}{x_{ref}}\right)
d
B
SP
L
=
20
lo
g
(
x
re
f
x
m
e
a
s
u
re
d
)
dB
SP
(Sound Power)
d
B
S
P
=
10
log
(
x
m
e
a
s
u
r
e
d
x
r
e
f
)
dB_{SP} =10\log\left(\frac{x_{measured}}{x_{ref}}\right)
d
B
SP
=
10
lo
g
(
x
re
f
x
m
e
a
s
u
re
d
)
Uncorrelated Sound
T
o
t
a
l
d
B
=
10
log
(
1
0
x
1
d
B
S
P
L
10
+
1
0
x
2
d
B
S
P
L
10
+
.
.
.
+
1
0
x
n
d
B
S
P
L
10
)
Total\ dB\ =\ 10\ \log\left( 10^{\frac{x_{1} \ dB\ SPL}{10}} +10^{\frac{x_{2} \ dB\ SPL}{10}} +...+10^{\frac{x_{n} \ dB\ SPL}{10}}\right)
T
o
t
a
l
d
B
=
10
lo
g
(
1
0
10
x
1
d
B
SP
L
+
1
0
10
x
2
d
B
SP
L
+
...
+
1
0
10
x
n
d
B
SP
L
)
Correlated Sound
T
o
t
a
l
d
B
=
20
log
(
1
0
x
1
d
B
S
P
L
20
+
1
0
x
2
d
B
S
P
L
20
+
.
.
.
+
1
0
x
n
d
B
S
P
L
20
)
Total\ dB\ =\ 20\ \log\left( 10^{\frac{x_{1} \ dB\ SPL}{20}} +10^{\frac{x_{2} \ dB\ SPL}{20}} +...+10^{\frac{x_{n} \ dB\ SPL}{20}}\right)
T
o
t
a
l
d
B
=
20
lo
g
(
1
0
20
x
1
d
B
SP
L
+
1
0
20
x
2
d
B
SP
L
+
...
+
1
0
20
x
n
d
B
SP
L
)
Pressure Total
T
o
t
a
l
d
B
S
P
L
=
10
log
(
p
1
2
+
p
2
2
+
.
.
.
+
p
n
2
p
0
2
)
Total\ dB_{SPL} =10\log\left(\frac{p_{1}^{2} +p_{2}^{2} +...+p_{n}^{2}}{p_{0}^{2}}\right)
T
o
t
a
l
d
B
SP
L
=
10
lo
g
(
p
0
2
p
1
2
+
p
2
2
+
...
+
p
n
2
)
where:
p
is
a
pressure
and
p
0
is
its
reference
pressure.
\text{where: } p\text{ is } \allowbreak \text{a } \allowbreak \text{pressure } \allowbreak \text{and } p_{0}\text{ is } \allowbreak \text{its } \allowbreak \text{reference } \allowbreak \text{pressure. } \allowbreak \text{}
where:
p
is
a
pressure
and
p
0
is
its
reference
pressure.
Sound at a Distance
T
o
t
a
l
d
B
S
P
L
=
C
o
n
s
t
d
B
S
P
L
−
20
log
(
D
o
b
s
e
r
v
e
d
D
r
e
f
)
Total\ dB_{SPL} =Const\ dB_{SPL} -20\log\left(\frac{D_{observed}}{D_{ref}}\right)
T
o
t
a
l
d
B
SP
L
=
C
o
n
s
t
d
B
SP
L
−
20
lo
g
(
D
re
f
D
o
b
ser
v
e
d
)
Reflected Sound
R
e
f
l
e
c
t
i
o
n
d
B
S
P
L
a
t
l
i
s
t
e
n
i
n
g
p
o
s
i
t
i
o
n
=
20
log
(
D
i
r
e
c
t
P
a
t
h
l
e
n
g
t
h
R
e
f
l
e
c
t
e
d
P
a
t
h
l
e
n
g
t
h
)
Reflection\ dB_{SPL} \ at\ listening\ position\ =\ 20\log\left(\frac{Direct\ Path\ length}{Reflected\ Path\ length}\right)
R
e
f
l
ec
t
i
o
n
d
B
SP
L
a
t
l
i
s
t
e
nin
g
p
os
i
t
i
o
n
=
20
lo
g
(
R
e
f
l
ec
t
e
d
P
a
t
h
l
e
n
g
t
h
D
i
rec
t
P
a
t
h
l
e
n
g
t
h
)
Assumes
inverse
square
propagation.
Note
this
formula
gives
the
decrease
in
level.
\text{Assumes } \allowbreak \text{inverse } \allowbreak \text{square } \allowbreak \text{propagation. } \allowbreak \text{Note } \allowbreak \text{this } \allowbreak \text{formula } \allowbreak \text{gives } \allowbreak \text{the } \allowbreak \text{decrease } \allowbreak \text{in } \allowbreak \text{level.}
Assumes
inverse
square
propagation.
Note
this
formula
gives
the
decrease
in
level.
Delay
Reflected delay
R
e
f
l
e
c
t
i
o
n
d
e
l
a
y
=
(
R
e
f
l
e
c
t
e
d
p
a
t
h
l
e
n
g
t
h
)
−
(
D
i
r
e
c
t
p
a
t
h
l
e
n
g
t
h
)
ν
Reflection\ delay\ =\ \frac{( Reflected\ path\ length) \ -\ ( Direct\ path\ length)}{\nu }
R
e
f
l
ec
t
i
o
n
d
e
l
a
y
=
ν
(
R
e
f
l
ec
t
e
d
p
a
t
h
l
e
n
g
t
h
)
−
(
D
i
rec
t
p
a
t
h
l
e
n
g
t
h
)
Where
ν
is
the
speed
of
sound,
assumes
a
completely
reflective
surface.
\text{Where } \nu \text{ is } \allowbreak \text{the } \allowbreak \text{speed } \allowbreak \text{of } \allowbreak \text{sound, } \allowbreak \text{assumes } \allowbreak \text{a } \allowbreak \text{completely } \allowbreak \text{reflective } \allowbreak \text{surface. } \allowbreak \text{}
Where
ν
is
the
speed
of
sound,
assumes
a
completely
reflective
surface.
Diffusion
Lowest Frequency Diffused
f
=
1130
4
D
f=\frac{1130}{4D}
f
=
4
D
1130
Where
f
=
frequency,
and
D
=
depth
\text{Where } f=\text{frequency, } \allowbreak \text{and } D=\text{depth}
Where
f
=
frequency,
and
D
=
depth
Room Modes
For Axial
f
=
565
L
or
f
=
ν
2
D
f=\frac{565}{L}\text{ or } f=\frac{\nu }{2D}
f
=
L
565
or
f
=
2
D
ν
Where
L
=
dimension
of
interest,
v
=
speed
of
sound,
and
D
=
distance
between
walls
\text{Where } L=\text{dimension } \allowbreak \text{of } \allowbreak \text{interest, } v=\text{speed } \allowbreak \text{of } \allowbreak \text{sound, } \allowbreak \text{and } D=\text{distance } \allowbreak \text{between } \allowbreak \text{walls}
Where
L
=
dimension
of
interest,
v
=
speed
of
sound,
and
D
=
distance
between
walls
General Formula
f
=
c
2
p
2
L
2
+
q
2
W
2
+
r
2
H
2
f=\frac{c}{2}\sqrt{\frac{p^{2}}{L^{2}} +\frac{q^{2}}{W^{2}} +\frac{r^{2}}{H^{2}}}
f
=
2
c
L
2
p
2
+
W
2
q
2
+
H
2
r
2
Where
\text{Where}
Where
p
,
q
and
r
are
room
mode
numbers
(always
integers)
p,\ q\text{ and } r\text{ are } \allowbreak \text{room } \allowbreak \text{mode } \allowbreak \text{numbers } \allowbreak \text{(always } \allowbreak \text{integers)}
p
,
q
and
r
are
room
mode
numbers
(always
integers)
L
,
W
and
H
are
dimensions
of
the
room
L,\ W\text{ and } H\text{ are } \allowbreak \text{dimensions } \allowbreak \text{of } \allowbreak \text{the } \allowbreak \text{room}
L
,
W
and
H
are
dimensions
of
the
room
c
is
the
speed
of
sound.
c\text{ is } \allowbreak \text{the } \allowbreak \text{speed } \allowbreak \text{of } \allowbreak \text{sound. } \allowbreak \text{}
c
is
the
speed
of
sound.
Absorption
A
=
S
a
A=Sa
A
=
S
a
Where
A
=
total
absorption
in
Sabines,
S
=
surface
area,
a
=
absorption
coefficient
\text{Where } A=\text{total } \allowbreak \text{absorption } \allowbreak \text{in } \allowbreak \text{Sabines, } S=\text{surface } \allowbreak \text{area, } a=\text{absorption } \allowbreak \text{coefficient } \allowbreak \text{}
Where
A
=
total
absorption
in
Sabines,
S
=
surface
area,
a
=
absorption
coefficient
Reverb Time
R
T
60
=
V
(
0.049
)
A
t
o
t
a
l
RT_{60} =\frac{V( 0.049)}{A_{total}}
R
T
60
=
A
t
o
t
a
l
V
(
0.049
)
Where
V
=
volume,
A
t
o
t
a
l
=
total
absorption
in
Sabines.
\text{Where } V=\text{volume, } A_{total} =\text{total } \allowbreak \text{absorption } \allowbreak \text{in } \allowbreak \text{Sabines.}
Where
V
=
volume,
A
t
o
t
a
l
=
total
absorption
in
Sabines.
© 2012-2023 Composing Gloves
Terms and Conditions
Contact